

Welcome to phconvert’s documentation!

	Version

	0.9+43.g3a86e58 (release notes [https://github.com/Photon-HDF5/phconvert/releases/])

phconvert [http://photon-hdf5.github.io/phconvert/] is a python 2 & 3 library
which helps writing valid
Photon-HDF5 [https://www.photon-hdf5.org] files.
This document contains the API documentation for phconvert.

The phconvert library contains two main modules: hdf5 and loader.
The former contains functions to save and validate Photon-HDF5 files.
The latter, contains functions to load other formats to be converted to
Photon-HDF5.

The phconvert repository contains a set the notebooks to convert
existing formats to Photon-HDF5 or to write Photon-HDF5 from scratch:

	phconvert notebooks [https://github.com/Photon-HDF5/phconvert/blob/master/notebooks/]
(read online [http://nbviewer.ipython.org/github/Photon-HDF5/phconvert/blob/master/notebooks/]).

In particular see notebook Writing Photon-HDF5 files [https://github.com/Photon-HDF5/phconvert/blob/master/notebooks/Writing%20Photon-HDF5%20files.ipynb]
(read online [http://nbviewer.ipython.org/github/Photon-HDF5/phconvert/blob/master/notebooks/Writing%20Photon-HDF5%20files.ipynb])
as an example of writing Photon-HDF5 files from scratch.

Finally, phconvert repository contains a
JSON specification [https://github.com/Photon-HDF5/phconvert/blob/master/phconvert/specs/photon-hdf5_specs.json]
of the Photon-HDF5 format which lists all the valid field names and
corresponding data types and descriptions.

Contents:

	Module hdf5

	Module loader

	Module pqreader

	Module bhreader

Indices and tables

	Index

	Module Index

	Search Page

Module hdf5

The module hdf5 defines functions to save and validate Photon-HDF5 files.
The main two functions in this module are:

	save_photon_hdf5() to saves data from a dictionary to Photon-HDF5.

	assert_valid_photon_hdf5() to validate if a HDF5 file is valid
Photon-HDF5.

This module also provides functions to save free-form dict to HDF5
(dict_to_group()) and read a HDF5 group into a dict
(dict_from_group()).
Finally there are utility functions to easily print HDF5 nodes and attributes
(print_children(), print_attrs()).

For more info see:
Writing Photon-HDF5 files [http://photon-hdf5.readthedocs.org/en/latest/writing.html].

List of functions

Main functions to save and validate Photon-HDF5 files.

	
phconvert.hdf5.save_photon_hdf5(data_dict, h5_fname=None, h5file=None, user_descr=None, overwrite=False, compression={'complevel': 6, 'complib': 'zlib'}, close=True, validate=True, warnings=True, skip_measurement_specs=False, require_setup=True, debug=False)

	Saves the dict data_dict in the Photon-HDF5 format.

This function requires the data to be saved as data_dict argument.
The data needs to have the hierarchical structure of a Photon-HDF5 file.
For the purpose, we use a standard python dictionary: each keys is
a Photon-HDF5 field name and each value contains data (e.g. array,
string, etc..) or another dictionary (in which case, it represents an
HDF5 sub-group). Similarly, sub-dictionaries contain data or
other dictionaries, as needed to represent the hierarchy
of Photon-HDF5 files.

Features of this function:

	Checks that all field names are valid Photon-HDF5 field names.

	Checks that all field type match the Photon-HDF5 specs (scalar, array,
or string).

	Populates automatically the identity group with filename, software,
version and file creation date.

	Populates automatically the provenance group with info on the original
data file (if it can be found on disk): creation and modification date,
path.

	Computes field acquisition_duration when not provided
(single-spot data only).

Minimal fields required to create a Photon-HDF5 file:

	/description (string)

	/photon_data/timestamps (array)

	/photon_data/timestamps_specs/timestamps_unit (scalar float)

	/setup/num_pixels (int): number of detectors

	/setup/num_spots (int): number of excitation/detection spots

	/setup/num_spectral_ch (int): number of detection spectral bands

	/setup/num_polarization_ch (int): number of detected polarization states

	/setup/num_split_ch (int): number of beam split channels

	/setup/modulated_excitation (bool): True if there is any form of intensity
or polarization modulation or interleaved excitation (PIE or nsALEX).
This field has become obsolete in version 0.5 and maintained only for
compatibility.

	/setup/excitation_alternated (array of bool): New in version 0.5.
Values are True if the respective excitation source is
intensity-modulated. In us-ALEX both sources are alternated,
while in PAX measurements only one source is alternated.

	/setup/lifetime (bool): True if dataset contains TCSPC data.

See also
Writing Photon-HDF5 files [http://nbviewer.ipython.org/github/Photon-HDF5/phconvert/blob/master/notebooks/Writing%20Photon-HDF5%20files.ipynb].

As a side effect data_dict is modified by adding the key
‘_data_file’ containing a reference to the pytables file.

	Parameters

	
	data_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the dictionary containing the photon data.
The keys must strings matching valid Photon-HDF5 paths.
The values must be scalars, arrays, strings or another dict.

	h5_fname (string or None [https://docs.python.org/3/library/constants.html#None]) – file name for the output Photon-HDF5 file.
If None and h5file is also None, the file name is taken from
data_dict['_filename'] with extension changed to ‘.hdf5’.

	h5file (pytables.File or None [https://docs.python.org/3/library/constants.html#None]) – an already open and writable HDF5
file to use as container. This argument can be used to complete
an HDF5 file already containing some arrays, or to update
an already existing Photon-HDF5 file in-place.
For more info see note below.

	user_descr (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None]) – dictionary of descriptions (strings) for
user-defined fields. The keys must be strings representing
the full HDF5 path of each field. The values must be
binary (i.e. encoded) strings restricted to the ASCII set.

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, a pre-existing HDF5 file with same name is
overwritten. If False, save the new file by adding the
suffix “new_copy” (and if a “_new_copy” file is already present
overwrites it).

	compression (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary containing the compression type
and level. Passed to pytables tables.Filters().

	close (bool [https://docs.python.org/3/library/functions.html#bool]) – If True (default) the HDF5 file is closed before
returning. If False the file is left open.

	validate (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, after saving perform a validation step
raising an error if the specs are not followed.

	warnings (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, print warnings for important optional fields
that are missing. If False, don’t print warnings.

	skip_measurement_specs (bool [https://docs.python.org/3/library/functions.html#bool]) – if True don’t print any warning for
missing measurement_specs group.

	require_setup (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, raises an error if some mandatory
fields in /setup are missing. If False, allows missing setup
fields (or missing setup altogether). Use False when saving
only detectors’ dark counts.

	debug (bool [https://docs.python.org/3/library/functions.html#bool]) – if True prints additional debug information.

For description and specs of the Photon-HDF5 format see:
http://photon-hdf5.readthedocs.org/

Note

The argument h5file accepts an already open HDF5 file for storage.
This allows completing a partially written file (for example
containing only photon_data arrays) or correcting and already complete
Photon-HDF5 file. When using h5file, you need to pass a full
data_dict structure as usual. If you don’t want update an array,
put in data_dict a reference to the existing pytables array
(instead of using a numpy array). Fields containing numpy arrays
will be overwritten. Fields containing pytables Array (including
CArray or EArray) will be left unmodified. In either cases the TITLE
attribute is always updated.

	
phconvert.hdf5.assert_valid_photon_hdf5(datafile, warnings=True, verbose=False, strict_description=True, require_setup=True, skip_measurement_specs=False)

	Asserts that datafile follows the Photon-HDF5 specs.

If the input datafile does not follow the specifications, it raises the
Invalid_PhotonHDF5 exception, with a message indicating the cause of
the error.

This function checks that:

	all fields are valid Photon-HDF5 names

	all fields have valid descriptions

	all mandatory fields are present

	if /setup/lifetime is True (i.e. 1), assures
that nanotimes and nanotimes_specs are present

	Parameters

	
	datafile (string or tables.File) – input data file to be validated

	warnings (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, print warnings for important optional fields
that are missing. If False, don’t print warnings.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – if True print details about the performed tests.

	strict_description (bool [https://docs.python.org/3/library/functions.html#bool]) – if True consider a non-conforming
description (TITLE) a specs violation.

	require_setup (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, raises an error if some mandatory
fields in /setup are missing. If False, allows missing setup
fields (or missing setup altogether).

	skip_measurement_specs (bool [https://docs.python.org/3/library/functions.html#bool]) – if True don’t print any warning for
missing measurement_specs group.

Utility functions

Utility functions to work with HDF5 files in pytables.

	
phconvert.hdf5.print_children(group)

	Print all the sub-groups in group and leaf-nodes children of group.

	Parameters

	group (pytables group) – the group to be printed.

	
phconvert.hdf5.print_attrs(node, which='user')

	Print the HDF5 attributes for node_name.

	Parameters

	
	node (pytables node) – node whose attributes will be printed.
Can be either a group or a leaf-node.

	which (string) – Valid values are ‘user’ for user-defined attributes,
‘sys’ for pytables-specific attributes and ‘all’ to print both
groups of attributes. Default ‘user’.

	
phconvert.hdf5.dict_from_group(group, read=True)

	Return a dict with the content of a PyTables group.

	
phconvert.hdf5.dict_to_group(group, dictionary)

	Save dictionary into HDF5 format in group.

Module loader

This module contains functions to load each supported data format.
Each loader function loads data from a third-party formats into a python
dictionary which has the structure of a Photon-HDF5 file.
These dictionaries can be passed to phconvert.hdf5.save_photon_hdf5()
to save the data in Photon-HDF5 format.

The loader module contains high-level functions which “fill” the dictionary
with the appropriate arrays. The actual decoding of the input binary files
is performed by low-level functions in other modules
(smreader.py, pqreader.py, bhreader.py). When trying to
decode a new file format, these modules can provide useful examples.

	
phconvert.loader.nsalex_bh(filename_spc, donor=4, acceptor=6, alex_period_donor=(10, 1500), alex_period_acceptor=(2000, 3500), excitation_wavelengths=(5.32e-07, 6.35e-07), detection_wavelengths=(5.8e-07, 6.8e-07), allow_missing_set=False, tcspc_num_bins=None, tcspc_unit=None)

	Load a .spc and (optionally) .set files for ns-ALEX and return 2 dict.

The first dictionary can be passed to the
phconvert.hdf5.save_photon_hdf5() function to save the data in
Photon-HDF5 format.

	Returns

	the first contains the main photon data (timestamps,
detectors, nanotime, …); the second contains the raw data from the
.set file (it can be saved in a user group in Photon-HDF5).

	Return type

	Two dictionaries

	
phconvert.loader.nsalex_ht3(filename, donor=0, acceptor=1, alex_period_donor=(150, 1500), alex_period_acceptor=(1540, 3050), excitation_wavelengths=(5.23e-07, 6.28e-07), detection_wavelengths=(5.8e-07, 6.8e-07))

	Load a .ht3 file containing ns-ALEX data and return a dict.

WARNING: This function is deprecated. Please use nsalex_pq() instead.

	
phconvert.loader.nsalex_pq(filename, donor=0, acceptor=1, alex_period_donor=(150, 1500), alex_period_acceptor=(1540, 3050), excitation_wavelengths=(5.23e-07, 6.28e-07), detection_wavelengths=(5.8e-07, 6.8e-07))

	Load PicoQuant PTU, HT3 or PT3 files containing ns-ALEX data.

This function returns a dictionary that can be passed to
phconvert.hdf5.save_photon_hdf5() to save a Photon-HDF5 file.

	
phconvert.loader.nsalex_pt3(filename, donor=0, acceptor=1, alex_period_donor=(150, 1500), alex_period_acceptor=(1540, 3050), excitation_wavelengths=(5.23e-07, 6.28e-07), detection_wavelengths=(5.8e-07, 6.8e-07))

	Load a .pt3 file containing ns-ALEX data and return a dict.

WARNING: This function is deprecated. Please use nsalex_pq() instead.

	
phconvert.loader.nsalex_t3r(filename, donor=0, acceptor=1, alex_period_donor=(150, 1500), alex_period_acceptor=(1540, 3050), excitation_wavelengths=(5.23e-07, 6.28e-07), detection_wavelengths=(5.8e-07, 6.8e-07))

	Load a .t3r file containing ns-ALEX data and return a dict.

This dictionary can be passed to the phconvert.hdf5.save_photon_hdf5()
function to save the data in Photon-HDF5 format.

	
phconvert.loader.usalex_sm(filename, donor=0, acceptor=1, alex_period=4000, alex_offset=750, alex_period_donor=(2850, 580), alex_period_acceptor=(930, 2580), excitation_wavelengths=(5.32e-07, 6.35e-07), detection_wavelengths=(5.8e-07, 6.8e-07), software='LabVIEW Data Acquisition usALEX')

	Load a .sm us-ALEX file and returns a dictionary.

This dictionary can be passed to the phconvert.hdf5.save_photon_hdf5()
function to save the data in Photon-HDF5 format.

Module pqreader

This module contains functions to load and decode files from PicoQuant
hardware.

The main functions to decode PicoQuant files (PTU, HT3, PT3, T3R) are respectively:

	load_ptu()

	load_ht3()

	load_pt3()

	load_t3r()

These functions return the arrays timestamps (also called macro-time or timetag),
detectors (or channel), nanotimes (also called micro-time or TCSPC time) and an
additional metadata dict.

Other lower level functions are:

	ptu_reader() to load metadata and raw t3 records from PTU files

	ht3_reader() to load metadata and raw t3 records from HT3 files

	pt3_reader() to load metadata and raw t3 records from PT3 files

	process_t3records() to decode the t3 records and return
timestamps (after overflow correction), detectors and TCSPC nanotimes.

	process_t3records_t3rfile() to decode the t3 records for t3r files.

	process_t2records() to decode the t2 records and return
timestamps (after overflow correction) and detectors.

The functions performing overflow/rollover correction
can take advantage of numba, if installed, to significanly speed-up
the processing.

List of functions

High-level functions to load and decode several PicoQuant file formats:

	
phconvert.pqreader.load_ptu(filename, ovcfunc=None)

	Load data from a PicoQuant .ptu file.

	Parameters

	
	filename (string) – the path of the PTU file to be loaded.

	ovcfunc (function or None [https://docs.python.org/3/library/constants.html#None]) – function to use for overflow/rollover
correction of timestamps. If None, it defaults to the
fastest available implementation for the current machine.

	Returns

	A tuple of timestamps, detectors, nanotimes (integer arrays) and a
dictionary with metadata containing the keys
‘timestamps_unit’, ‘nanotimes_unit’, ‘acquisition_duration’ and
‘tags’. The data in the PTU file header is returned as a
dictionary of “tags”. Each item in the dictionary has ‘idx’, ‘type’,
‘value’ and ‘offset’ keys. Some tags also have a ‘data’ key.
Use _ptu_print_tags() to print the tags as an easy-to-read
table.

	
phconvert.pqreader.load_ht3(filename, ovcfunc=None)

	Load data from a PicoQuant .ht3 file.

	Parameters

	
	filename (string) – the path of the HT3 file to be loaded.

	ovcfunc (function or None [https://docs.python.org/3/library/constants.html#None]) – function to use for overflow/rollover
correction of timestamps. If None, it defaults to the
fastest available implementation for the current machine.

	Returns

	A tuple of timestamps, detectors, nanotimes (integer arrays) and a
dictionary with metadata containing at least the keys
‘timestamps_unit’ and ‘nanotimes_unit’.

	
phconvert.pqreader.load_pt3(filename, ovcfunc=None)

	Load data from a PicoQuant .pt3 file.

	Parameters

	
	filename (string) – the path of the PT3 file to be loaded.

	ovcfunc (function or None [https://docs.python.org/3/library/constants.html#None]) – function to use for overflow/rollover
correction of timestamps. If None, it defaults to the
fastest available implementation for the current machine.

	Returns

	A tuple of timestamps, detectors, nanotimes (integer arrays) and a
dictionary with metadata containing at least the keys
‘timestamps_unit’ and ‘nanotimes_unit’.

	
phconvert.pqreader.load_phu(filename)

	Load data from a PicoQuant .phu file.

	Parameters

	filename (string) – the path of the PHU file to be loaded.

	Returns

	A tuple of histograms, histogram resolution, and tags.
The latter is an dictionary of tags contained
in the file header. Each item in the dictionary has ‘idx’, ‘type’,
‘value’ and ‘offset’ keys. Some tags also have a ‘data’ key.
Use _ptu_print_tags() to print the tags as an easy-to-read
table.

Low-level functions

These functions are the building blocks for loading and decoding the different
file formats:

	
phconvert.pqreader.ptu_reader(filename)

	Read the header and the raw t3 or t2 records from a PTU file.

	
phconvert.pqreader.ht3_reader(filename)

	Load raw t3 records and metadata from an HT3 file.

	
phconvert.pqreader.pt3_reader(filename)

	Load raw t3 records and metadata from a PT3 file.

	
phconvert.pqreader.process_t3records(t3records, time_bit=10, dtime_bit=15, ch_bit=6, special_bit=True, ovcfunc=None)

	Extract the different fields from the raw t3records array.

The input array of t3records is an array of “records” (a C struct).
It packs all the information of each detected photons. This function
decodes the different fields and returns 3 arrays
containing the timestamps (i.e. macro-time or number of sync,
few-ns resolution), the nanotimes (i.e. the micro-time or TCSPC time,
ps resolution) and the detectors.

t3records have these fields (in little-endian order):

| Optional special bit | detectors | nanotimes | timestamps |
 MSB LSB

Bit allocation of these fields, starting from the MSB:

	special bit: 1 bit if special_bit = True (default), else no special bit.

	channel: default 6 bit, (argument ch_bit), detector or special marker

	nanotimes: default 15 bit (argument dtime_bit), nanotimes (TCSPC time)

	timestamps: default 10 bit, (argument time_bit), the timestamps (macro-time)

Timestamps: The returned timestamps are overflow-corrected, and therefore
should be monotonically increasing. Each overflow event is marked by
a special detector (or a special bit) and this information is used for
the correction. These overflow “events” are not removed in the returned
arrays resulting in spurious detectors. This choice has been made for
safety (you can always go and check where there was an overflow) and for
efficiency (removing a few elements requires allocating a new array that
is potentially expensive for big data files). Under normal usage the
additional detectors take negligible space and can be safely ignored.

	Parameters

	
	t3records (array) – raw array of t3records as saved in the
PicoQuant file.

	time_bit (int [https://docs.python.org/3/library/functions.html#int]) – number of bits in the t3record used for timestamps
(or macro-time).

	dtime_bit (int [https://docs.python.org/3/library/functions.html#int]) – number of bits in the t3record used for the nanotime
(TCSPC time or micro-time)

	ch_bit (int [https://docs.python.org/3/library/functions.html#int]) – number of bits in the t3record used for the detector
number.

	special_bit (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the t3record contains a special bit
for overflow correction.
This special bit will become the MSB in the returned detectors
array. If False, it assumes no special bit in the t3record.

	ovcfunc (function or None [https://docs.python.org/3/library/constants.html#None]) – function to perform overflow correction
of timestamps. If None use the default function. The default
function is the numba-accelerated version is numba is installed
otherwise it is function using plain numpy.

	Returns

	A 3-element tuple containing the following 1D arrays (all of the same
length):

	timestamps (array of int64): the macro-time (or number of sync)
of each photons after overflow correction. Units are specified in
the file header.

	nanotimes (array of uint16): the micro-time (TCSPC time), i.e.
the time lag between the photon detection and the previous laser
sync. Units (i.e. the bin width) are specified in the file header.

	detectors (arrays of uint8): detector number. When
special_bit = True the highest bit in detectors will be
the special bit.

	
phconvert.pqreader.process_t2records(t2records, time_bit=25, ch_bit=6, special_bit=True, ovcfunc=None)

	Extract the different fields from the raw t2records array.

The input array of t2records is an array of “records” (a C struct).
It packs all the information of each detected photons. This function
decodes the different fields and returns 2 arrays
containing the timestamps (also called macro-time or timetag) and
the detectors (or channel).

t2records have these fields (in little-endian order):

| Optional special bit | detectors | timestamps |
 MSB LSB

	special bit: 1 bit if special_bit = True (default), else no special bit.

	channel: default 6 bit, (argument ch_bit), detector or special marker

	timestamps: default 25 bit, (argument time_bit), the timestamps (macro-time)

The returned timestamps are overflow-corrected, and therefore
should be monotonically increasing. Each overflow event is marked by
a special detector (or a special bit) and this information is used for
the correction. These overflow “events” are not removed in the returned
arrays resulting in spurious detectors. This choice has been made for
safety (you can always go and check where there was an overflow) and for
efficiency (removing a few elements requires allocating a new array that
is potentially expensive for big data files). Under normal usage the
additional detectors take negligible space and can be safely ignored.

	Parameters

	
	t2records (array) – raw array of t2records as saved in the
PicoQuant file.

	time_bit (int [https://docs.python.org/3/library/functions.html#int]) – number of bits in the t2record used for timestamps

	ch_bit (int [https://docs.python.org/3/library/functions.html#int]) – number of bits in the t2record used for the detector
number.

	special_bit (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the t2record contains a special bit
for overflow correction or external markers.
This special bit will become the MSB in the returned detectors
array. If False, it assumes no special bit in the t2record.

	ovcfunc (function or None [https://docs.python.org/3/library/constants.html#None]) – function to perform overflow correction
of timestamps. If None use the default function. The default
function is the numba-accelerated version if numba is installed
otherwise it is function using plain numpy.

	Returns

	A 2-element tuple containing the following 1D arrays (all of the same
length):

	timestamps (array of int64): the macro-time (or number of sync)
of each photons after overflow correction. Units are specified in
the file header.

	detectors (arrays of uint8): detector number. When
special_bit = True the highest bit in detectors will be
the special bit.

Module bhreader

This module contains functions to load and decode files from Becker & Hickl
hardware.

The high-level function in this module are:

	load_spc() which loads and decoded the photon data from SPC files.

	load_set() which returns a dictionary of metadata from SET files.

Becker & Hickl SPC Format

The structure of the SPC format is here described.

SPC-600/630

SPC-600/630 files have a record of 48-bit (6 bytes)
in little endian (<) format.
The first 6 bytes of the file are an header containing
the timestamps_unit (in 0.1ns units) in the two central bytes
(i.e. bytes 2 and 3).
In the following drawing each char represents 2 bits:

bit: 64 48 0
 0000 0000 XXXX XXXX XXXX XXXX XXXX XXXX
 '-------' '--' '--' '-----'
field names: a c b d

 0000 0000 XXXX XXXX XXXX XXXX XXXX XXXX
 '-------' '--' '--' '-------'
numpy dtype: a c b field0

macrotime = [b] [a] (24 bit)
detector = [c] (8 bit)
nanotime = [d] (12 bit)

overflow bit: 13, bit_mask = 2^(13-1) = 4096

SPC-134/144/154/830

SPC-134/144/154/830 files have a record of 32-bits (4 bytes) in
little endian (<) format.
The first 4 bytes of the file are an header containing the
timestamps_unit (in 0.1ns units) in first two bytes.
In the following drawing each char represents 2 bits:

bit: 32 0
 XXXX XXXX XXXX XXXX
 '''-----' '''-----'
field names: a b c d

 XXXX XXXX XXXX XXXX
 '-------' '-------'
numpy dtype: field1 field0

macrotime = [d] (12 bit)
detector = [c] (4 bit)
nanotime = [b] (12 bit)
aux = [a] (4 bit)

aux = [invalid, overflow, gap, mark]

If overflow == 1 and invalid == 1 --> number of overflows = [b][c][d]

List of functions

High-level functions to load and decode Becker & Hickl SPC/SET pair of files:

	
phconvert.bhreader.load_spc(fname, spc_model='SPC-630')

	Load data from Becker & Hickl SPC files.

	Parameters

	spc_model (string) – name of the board model. Valid values are
‘SPC-630’, ‘SPC-134’, ‘SPC-144’, ‘SPC-154’ and ‘SPC-830’.

	Returns

	3 numpy arrays (timestamps, detector, nanotime) and a float
(timestamps_unit).

	
phconvert.bhreader.load_set(fname_set)

	Return a dict with data from the Becker & Hickl .SET file.

Low-level functions

These functions are the building blocks for decoding Becker & Hickl files:

	
phconvert.bhreader.bh_set_identification(fname_set)

	Return a dict containing the IDENTIFICATION section of .SET files.

The both keys and values are native strings (binary strings on py2
and unicode strings on py3).

	
phconvert.bhreader.bh_set_sys_params(fname_set)

	Return a dict containing the SYS_PARAMS section of .SET files.

The keys are native strings (traditional strings on py2
and unicode strings on py3) while values are numerical type or
byte strings.

	
phconvert.bhreader.bh_decode(s)

	Replace code strings from .SET files with human readable label strings.

	
phconvert.bhreader.bh_print_sys_params(sys_params)

	Print a summary of the Becker & Hickl system parameters (.SET file).

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 phconvert	

 	
 	
 phconvert.bhreader	

 	
 	
 phconvert.hdf5	

 	
 	
 phconvert.loader	

 	
 	
 phconvert.pqreader	

Index

 A
 | B
 | D
 | H
 | L
 | N
 | P
 | S
 | U

A

 	
 	assert_valid_photon_hdf5() (in module phconvert.hdf5)

B

 	
 	bh_decode() (in module phconvert.bhreader)

 	bh_print_sys_params() (in module phconvert.bhreader)

 	
 	bh_set_identification() (in module phconvert.bhreader)

 	bh_set_sys_params() (in module phconvert.bhreader)

D

 	
 	dict_from_group() (in module phconvert.hdf5)

 	
 	dict_to_group() (in module phconvert.hdf5)

H

 	
 	ht3_reader() (in module phconvert.pqreader)

L

 	
 	load_ht3() (in module phconvert.pqreader)

 	load_phu() (in module phconvert.pqreader)

 	load_pt3() (in module phconvert.pqreader)

 	
 	load_ptu() (in module phconvert.pqreader)

 	load_set() (in module phconvert.bhreader)

 	load_spc() (in module phconvert.bhreader)

N

 	
 	nsalex_bh() (in module phconvert.loader)

 	nsalex_ht3() (in module phconvert.loader)

 	
 	nsalex_pq() (in module phconvert.loader)

 	nsalex_pt3() (in module phconvert.loader)

 	nsalex_t3r() (in module phconvert.loader)

P

 	
 	phconvert.bhreader (module)

 	phconvert.hdf5 (module)

 	phconvert.loader (module)

 	phconvert.pqreader (module)

 	print_attrs() (in module phconvert.hdf5)

 	
 	print_children() (in module phconvert.hdf5)

 	process_t2records() (in module phconvert.pqreader)

 	process_t3records() (in module phconvert.pqreader)

 	pt3_reader() (in module phconvert.pqreader)

 	ptu_reader() (in module phconvert.pqreader)

S

 	
 	save_photon_hdf5() (in module phconvert.hdf5)

U

 	
 	usalex_sm() (in module phconvert.loader)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to phconvert’s documentation!

 		
 Module hdf5

 		
 List of functions

 		
 Utility functions

 		
 Module loader

 		
 Module pqreader

 		
 List of functions

 		
 Low-level functions

 		
 Module bhreader

 		
 Becker & Hickl SPC Format

 		
 SPC-600/630

 		
 SPC-134/144/154/830

 		
 List of functions

 		
 Low-level functions

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

